ASSIGNMENT 8

Textbook Assignment:

- Unit 6, Lesson 3, "Refractivity." Pages 6-3-12 through 6-3-15.
- Unit 6, Lesson 4, "Electrooptics." Pages 6-4-1 through 6-4-5.
- Unit 6, Lesson 5, "Sound Focusing." Pages 6-5-1 through 6-5-7.
- Unit 6, Lesson 6, "Tides and Tidal Computations." Pages 6-6-1 through 6-6-10.
- Unit 6, Lesson 7. "Computing Sunrise and Sunset." Pages 6-7-1 through
- Unit 6, Lesson 8, "Computing Moonrise and Moonset, and Percent Illunimtion." Pages 6-8-1 through 6-8-8.
- Unit 6. Lesson 9, "Radiological Fallout." Pages 6-9-1 through 6-9-22. Unit 7, Lesson 1, "Maintenance of Meteorological and Oceanographic Files, Records, Directives, Publications, and Charts." Pages 7-1-1 through 7-1-12.

Learning Objective Define anomalous propagation.

- Which of the following situations 8-1. may be a result of anomalous propagation?
 - 1. A ship can be seen visually on the horizon but not be detected by radar
 - 2. An aircraft at 10,000 ft can be 8-4. Which of the following processes seen visually by not be detected by radar
 - 3. Returns appear on the radar PPI and RHI scopes at a certain range, but no actual object is present at that range which could cause the return
 - 4. Each of the above

Learning Objective: Identify the visible portion of the electromagnetic spectrum, and the processes within the atmosphere that affect it.

- 8-2. What is the range of wavelengths for visible light (violet through red)?
 - 1. 4 to 78 µ
 - 2. .4 to .78 μ
 - 3. .004 to .0078 cm
 - 4. .000004 to .0000078 m

8-3. Which of the following particles reflect light?

- 1. All particles smaller than the wavelength in question
- 2. All particles equal or larger than the wavelength in question
- 3. All particles equal or larger than about .4 #
- 4. All particles smaller than about .4 📙
- causes our skies to appear blue?
 - 1. Reflection
 - 2. Transmission
 - 3. Raleigh Scattering
 - 4. Mie Scattering
- 8-5. What is a black body?
 - 1. Any object with an absorptivity of 100 units
 - 2. A theoretical object with an infinite absorptivity (all energy is absorbed)
 - 3. A theoretical object that will reflect 100% of the energy striking it
 - 4. A theoretical object that will transmit 100% of the energy striking it

Learning Objective: Identify the four factors affecting target detection.

- 8-6. What are the four factors that affect target detection?
 - Weather elements absorbing, reflecting, scattering, and transmitting energy
 - Target size, target distance, target to background contrast, and weather
 - 3. Target reflectivity, target absorptivity, target transmissivity, and target to background contrast
 - 4. Time of day, illumination of the target, target reflectivity, and target to background contrast

Learning objective: Identify the various types of target acquisition systems and identify the most proficient system.

- 8-7. What is the most capable target acquisition system?
 - 1. TV sensors
 - 2. FLIR (foward-looking infrared)
 sensors
 - 3. Visual and IR laser sensors
 - 4. The human eye

Learning Objective
Identify the two major
components of a precision
quided munition (PGM).

- 8-8. What does the control unit of a PGM
 - It redirects thrust by controlling the engine or adjusting ailerons to keep the PGM on course
 - 2. It processes energy input levels to determine if the unit is aimed at the energy contrast pattern that has been designated as a target
 - 3. It provides the thrust which accelerates the PGM
 - 4. It converts received electromagnetic energy to electronic impulses
 - A. NOW-GUIDED MUNITION
 - B. ACTIVE PGM
 - C. PASSIVE PGH
 - D. SEMI-ACTIVE PGM

FIGURE 8A

IN ANSWERING QUESTIONS 8-9 THROUGH 8-11, CHOOSE THE TYPE OF SYSTEM FROM FIGURE 8A THAT BEST MATCHES THE DESCRIPTION GIVEN IN THE OUESTION.

- 8-9. A "Stinger" hand-held anti-aircraft missile that emits a microwave signal which reflects off a target. The missle is armed only upon recognition of a high Doppler shift in the reflected signal from a hostile aircraft (i.e. a rapidly approaching aircraft or a spinning prop or rotor blade).
 - 1. A
 - 2. B
 - 3. C
 - 4. D

- 8-10. A "Copperhead" artillery round that is shot from a tank, howitzer, or shipboard gun barrel. This munition deploys wings in flight and homes in on a spot of laser energy reflected off the target.

 Laser target designators are carried aboard aircraft, tanks, or by men deployed in the field.
 - 1. A
 - 2. B
 - 3. C
 - 4. D
- 8-11. "Maverick" air-to-air/
 air-to-ground missile: TV images
 "seen" by the missile are relayed
 to the aircraft cockpit or to a
 remote console. Automatic
 processors aboard the missile keep
 the weapon on course to the
 designated target. Commands may be
 sent to the missile by the aircraft
 or a remote console to correct
 major course deviations.
 - 1. A
 - 2. B
 - 3. C
 - 4. D

Learning Objective: Identify the advantages and disadvantages of PGMs.

- A. TURBULENCE
- B. LIGHTENING/TRIBOELECTRIFICATION
- C. HIGH MOISTURE (CLOUDS OR PRECIPITATION)
- D. ICING
- B. HAIL

FIGURE 8B

REFER TO FIGURE 8B TO ANSWER QUESTIONS 8-12 THROUGH 8-15.

- 8-12. Which phenomenon can damage sensor units by albation and dent or bend control surfaces?
 - 1. A
 - 2. B
 - 3. D
 - 4. E
- 8-13. Which phenomenon can refract/absorb visual and IR energy reflections from the target and prevent lock-on or significantly degrade lock-on range?
 - 1. A
 - 2. C
 - 3. D
 - 4. E
- 8-14. Which phenomenon can overload and burn out PGM onboard sensor units or cause erratic electronic iapulses?
 - 1. A
 - 2. B
 - 3. C
 - 4. D
- 8-15. Which phenomenon can cause the PGM flight to shift erratically and cause the PGM sensor to break lock-on?
 - 1. A
 - 2. B
 - 3. C
 - 4. E

Learning Objective: Identify the atmospheric elements that control blast waves in the atmosphere.

- 8-16. sound velocity increases with altitude?
 - 1. Sound waves are refracted upward and sound intensity near the surface increases
 - 2. Sound waves are refracted upward and sound intensity near the surface decreases
 - 3. Sound waves are refracted downward and sound intensity near the surface increases
 - 4. Sound waves are refracted downward and sound intensity near the surface decreases
- 8-17. Which of the following meteorological elements affects the speed of sound the least?
 - 1. Air temperature
 - 2. Wind velocity
 - 3. Relative humidity
- If the azimuth of interest is 270° 8-18. and the winds are 080° at 20 knots, what entry should be made in column (5) of the wind-speed component worksheet?
 - 1. 10
 - 2. -10
 - 3. -20
 - 4. 80
- What is an "azimuth of interest"? 8-19.
 - 1. A direction, measured from true north, from a blast point to a location of interest
 - 2. A direction, measured from true north, from a location of Interest to a blast point
 - 3. A direction, measured from magnetic north, from a blast point to a location of interest
 - 4. A direction, measured from magnetic north, from a location of interest to a blast point

- What happens to sound waves if the 8-20. The column (7) entry on a windspeed component worksheet is -15, and the temperature is 25°C. What is the speed of sound?
 - 1. 658 kt.
 - 2. 660 kt.
 - 3. 685 kt
 - 4. 686 kt

Learning Objective: Identify sound focus categories and sound speed criteria.

REFER TO FIGURE 8C. A SPEED OF SOUND PLOTTING DIAGRAM, TO ANSWER QUESTION 8-21.

- 8-21. What category of sound focusing till occur?
 - 1. N11
 - 2. Slight
 - 3. Moderate
 - 4. Heavy

Learning Objectives Recognize the effect of the Sun and the Moon on tides.

- 8-22. In the low and middle latitudes, how much earlier or later does the noon rise and set each day?
 - 1. 50 min earlier
 - 2. 50 min later
 - 3. 1 hr 50 min earlier
 - 4. 1 hr 50 min later
- 8-23. When do spring tides occur?
 - 1. Full moon
 - 2. New moon
 - 3. Both 1 and 2 above
 - 4. Quarter moon
- 8-24. Other than the position of the Sun and the Moon in relation to the Earth, which factor has the greatest control on the normal tides?
 - 1. Winds
 - 2. Temperature
 - 3. Season of the year
 - 4. Coastal configuration and bathymetry

Learning Objectives
Identify the four volumes of
<u>Tide Tables</u> and recognize
how the information is used
to compute tides.

- 8-25. Which of the seven tables in each <u>Tide Tables</u> are necessary to compute tides for subordinate stations?
 - Moonrise and Moonset; Local Mean Time of Sunrise and Sunset; and Tidal Differences and Other Constants
 - Tidal Differences and Other Constants; Height of Tide At Any Time; and Moonrise and Moonset
 - Daily Tide Predictions\ Height of Tide At Any Time; and Moonrise and Moonset
 - Daily Tide Predictions; Tidal Differences and Other Constants and Height of Tide At Any Time

- 8-26. What is a "Reference Station"?
 - A location for which daily tide predictions have been computed
 - 2. A location for which only tidal differences from daily predictions from some other location are provided
 - 3. A location for which typical tidal curves have been computed
 - 4. A location for which tidal differences are unknown or unreliable
 - 8-27. How are "Subordinate Stations" listed in the Tidal Differences and Other Constants table?
 - 1. Alphabetically
 - 2. Numerically by station number
 - 3. Geographically along coastlines
 - 4. Geographically by region from westernmost to easternmost

Daily Predictions - Wilmington MC 1990

October

~~~~~			
	Time	Height	
	h =	ft	CE.
1	0109	0.4	12
M	0640	4.3	131
	1326	0.3	9
	1910	4.7	143

Time Meridian 75°W.

#### FIGURE 8D

Station 2721 Orton Pt, MC 34°03'N 077°56'W Ranges: Hean 4.0 ft Spring 4.4 ft Mean Tide Level 2.2 ft Differences (based on Wilmington) Height Time Hiah Low High Low Water Water Water Water ft ft h m h m *0.98 *1.06 -0 58 -0 34

#### FIGURE 8E

REFER TO FIGURE 8D, SELECTED INFORMATION FROM

A DAILY PREDICTION TABLE, AND FIGURE 8E, INFORMATION FROM THE TIDAL DIFFERENCES AND OTHER CONSTANTS TABLE, TO ANSWER QUESTIONS 8-28 AND 8-29.

- 8-28. What is the time of the highest-high tide at Orton Point, North Carolina on 1 October 1990?
  - 1. 1252 EST
  - 2. 1814 EST
  - 3. 1836 EST
  - 4. 1910 EDT
- What is the height of the highest 8-29. high tide at Orton Point on 1 October 1990?
  - 1. 4.3 ft
  - 2. 4.6 ft
  - 3. 4.7 ft
  - 4. 5.0 ft

Learning Objective: Identify the terms relating to tidal currents.

- A. STAND
- B. SLACK WATER
- C. EBB TIDE
- D. FLOOD TIDE

#### FIGURE 8F

REPER TO FIGURE 8F TO ANSWER QUESTIONS 8-30 THROUGH 8-33.

- 8-30. Which term refers to the flow of water into a bay or harbor or is generally associated with the stage of the tide when the water is rising?
  - 1. A
  - 2. B
  - 3. C
  - 4. D
- Which term refers to the flow of 8-31. water out of a bay or harbor or is generally associated with the stage of the tide when the water is failing?
  - 1. A
  - 2. B
  - 3. C
  - 4. D
- Which term refers to the period of 8-32. time when there is no horizontal movement of water?
  - 1. A
  - 2. B
  - 3. C 4. D
- 8-33. Which term refers to the period of time when there is no vertical rise or lowering of the water level?
  - 1. A
  - 2. B
  - 3. C
  - 4. D

Learning Objective: Calculate the times of Sunrise and Sunset.

REFER TO TABLE 6-7-1 TO ANSWER QUESTIONS 8-34 AND 8-35.

- 8-34. At what Local Mean Time (LMT) will sunset occur on 9 August at 31°00'N?
  - 1847 LMT 1.
  - 2. 1848 LMT
  - 3. 1849 LMT
  - 4. 1854 LMT
- 8-35. At what LMT till sunset occur on 17 July at 49°00'N?
  - 1. 1948 LMT
  - 2. 1956 LMT
  - 3. 1958 LMT
  - 4. 1959 LMT

Learning Objective: Identify the procedure used to convert LMT to LST and UTC.

- 8-36. If sunrise occurs at 0700 LMT at  $40^{\circ}00'N''$   $087^{\circ}32'W$ , what time does it 8-40. When the Moon is closest to the occur at that point in Local Standard Time?
  - 1. 0650
  - 2. 0652
  - 3. 0708
  - 4. 0710
- 8-37. What is the UTC time if the Local Standard Time at 90°W is 0700?
  - 1. 0100
  - 2. 0600
  - 3. 0700
  - 4. 1300

Learning Objective: Define "Twilight" and identify the tables and the procedures used in twilight computations.

- Which of the following states the 8-38. correct order of occurrence during the evening?
  - 1. Sunset, Nautical Twilight. Civil Twilight, Astronomical Twilight
  - 2. Civil Twilight, Sunset, Nautical Twilight, Astronomical Twiliaht
  - 3. Sunset, Civil Twilight, Nautical Twilight, Astronomical Twilight
  - 4. Sunset, Civil Twilight, Astronomical Twilight, Nautical Twilight

Learning Objective: Identify the two factors in the Moon's orbit that cause daily changes in the time of moonrise and moonset.

- 8-39. What is the Moon's maximum ecliptic orbit angle?
  - 1. 18 1/2°
  - 2. 23 1/2°
  - 3. 27°
  - 4. 28 1/2°
- Earth in its orbit, what is this called?
  - 1. Apogee
  - 2. Perigee
  - 3. Elliptic period
  - 4. Ecliptic period

Learning Objective: Identify the steps used to compute moonrise and moonset from the Air Almanac.

- 8-41. Where are the times of moonrise 8-44. What was the range of Lunar located in the Air Almanac?
  - 1. In the Daily listing on the upper right corner of the A.M.
  - 2. In the Daily listing on the lower left comer of the A.M. page
  - 3. In the Daily listing on the upper right corner of the P.M. page
  - 4. In the Daily listing on the lower left comer of the P.M. page
- Which two procedures must you do to 8-42. the moonrise/moonset information provided on the Dally listing pages before you may convert longitude arc to time?
  - 1. Interpolate for longitude and then correct for altitude
  - 2. Interpolate for latitude then correct for longitude
  - 3. Interpolate for longitude then interpolate time difference and latitude for the time correction
  - 4. Interpolate for latitude then find the time correction based on the time difference and the latitude

REFER TO TABLES 6-8-1 AND 6-8-2 IN THE TRAMAN TO ANSWER QUESTIONS 8-43 AND 8-44.

- 8-43. What was the correct LMT for moonset on August 1, 1990 at 50°00'S 90°00'W?
  - 1. 0407
  - 2. 0410
  - 3. 0413
  - 4. 0418

Learning Objective: Relate the age of the Moon in days to the percent of illumination available.

- illumination on August 1, 1990?
  - 1. 01% ±1%
  - 2. 67% ±5%
  - 3. 77% ±5%
  - 4. 85% ±4%

Learning Objective: Recognize how weapon yield and burst type effect RADPO.

- 8-45. Which of the following bursts will produce the most widespread fallout?
  - 1. A 1-Kt burst at the surface
  - 2. A 10-Kt burst at the surface
  - 3. A 15-Kt low-air burst
  - 4. A 15-Kt high-air burst
- 8-46. Which of the following bursts will produce the heaviest fallout?
  - 1. A 10-Kt high-air burst
  - 2. A 10-Kt low-air burst
  - 3. A 100-Kt low-air burst
  - 4. A 10-Kt surface burst

Learning Objective Diagram the zones of the most hazardous fallout using the information contained in the Basic Wind Data Message.

### SITUATION

A Basic Wind Data Message gives a layer 4 (2,000 to 4,000 m) wind data group of 070040. You have a 1:100,000 scale chart available.

FIGURE 8G

REFER TO FIGURE 8G TO ANSWER QUESTIONS 8-47 AND 8-48.

- 8-47. In which general direction should your vector arrow point?
  - 1. NE
  - 2. SE
  - 3. SW
  - 4. NW
- 8-48. The vector drawn for layer 4 should be how long?
  - 1. 20.0 cm
  - 2. 23.6 cm
  - 3. 38.4 cm
  - 4. 43.6 cm

REFER TO FIGURE 6-9-3 IN THE TRAMAN TO ANSWER QUESTION 8-49.

- 8-49. You have been notified of a 25-Kt weapon burst. What is the cloud bottom height?
  - 1. 7,100 meters
  - 2. 7,400 meters
  - 3. 7,600 meters
  - 4. 11,500 meters

### SITUATION

Upon plotting the 2/3 stem, cloud base, and cloud top radials on your wind vector plot, you determine that the 2/3 stem radial is 010°, the CB radial is 040°, and the CT radial is 050°.

### FIGURE 8H

REFER TO FIGURE 8H TO ANSWER QUESTION 8-50.

- 8-50. What is the EDD?
  - 1. 010°
  - 2. 020°
  - 3. 030°
  - 4. 040°

### SITUATION

For a 10-Kt weapon yield, you measure the length of the EDD (from GZ to the wind vector plot from your NAV Basic Wind Data Message) as 45 cm on a 1:100,000 chart.

#### REMEMBER:

1: 50,000 scale, 1 cm = 0.5 km

1:100,000 scale, 1 cm = 1.0 km

1:250,000 scale, 1 cm = 4.0 km

### and,

1 km = 0.53946 nmi

1 nmi = 1.852 km

#### FIGURE 8I

REFER TO FIGURE 81 TO ANSWER QUESTIONS 8-51 THROUGH 8-53.

- 8-51. Which of the following EDDs is represented by the 45-cm vector plot?
  - 1. 2.4 nmi
  - 2. 24.3 nmi
  - 3. 242.8 nmi
  - 4. 2427.6 nmi
- 8-52. Which, if any, of the following is the EDF speed?
  - 1. 13.5 kt
  - 2. 46.3 kt
  - 3. 134.9 kt
  - 4. None of the above
- 8-53. Which, if any, of the following is the Zone I distance?
  - 1. 7.0 nmi
  - 2. 9.5 nmi
  - 3. 18.0 nmi
  - 4. None of the above
- 8-54. How do you determine the Zone II distance?
  - 1. EDF times 2
  - 2. Zone I distance times 2/3
  - 3. Zone I distance times 2
  - 4. Zone I distance times 3

- 8-55. What does the line "ZULU" of an Effective Downwind Message provide?
  - The surface wind direction and wind speed
  - 2. A system identification from the computer that calculated the data
  - 3. Effective Date/Time Group (UTC) of the beginning of the 24-hour valid period for the winds
  - 4. Date/Time Group (UTC) of the upper wind data used to compute the EDM data
- 8-56. How are expansion angles transmitted in the EDM?
  - In plain language following the wind group
  - In parenthesis following the wind group
  - As an extra digit at the end of the wind group
  - 4. Both 2 and 3 above
- 8-57. For what purpose is the "CHARLIE" group of the EDM provided?
  - 1. 2- to 5-Kt weapons
  - 2. 5- to 30-Kt weapons
  - 3. 30- to 100-Kt weapons
  - 4. 100- to 300-Kt weapons

## SITUATION

A 3-Kt detonation has occurred at 1000UTC bearing 270°True at 15 nmi from your ship.

The NAV EDM, received 2 hours ago, gives an "ALPHA" group as 095020.

FIGURE 8J

REFER TO FIGURE 8J TO ANSWER QUESTIONS 8-58 AND 8-59.

- 8-58. How long will it take for the fallout to reach your ship's 1000UTC position?
  - 1. 15 min
  - 2. 30 min
  - 3. 45 min
  - 4. 1 hr 15 min

- 8-59. Where is the ship at 1000UTC?
  - 1. Burst radius
  - 2. Zone I
  - 3. Zone II
  - 4. Outside of Zone I and Zone II

Learning Objective; Define the terms directive, instruction, notice, change transmittal, files, records, publications, charts, and forms.

- A. DIRECTIVE
- B. INSTRUCTION
- C. NOTICE
- D. CHANGE TRANSHITTAL

### FIGURE 8K

REFER TO FIGURE 8K TO ANSWER QUESTIONS 8-60 THROUGH 8-63.

- 8-60. Which term is the general description that includes all of the other terms?
  - 1. A
  - 2. в
  - 3. C
  - 4. D
  - 8-61. Which term describes a product that remains in effect until superseded or cancelled?
    - 1. A
    - 2. В
    - 3. C
    - 4. D
  - 8-62. Which term describes a product that is used to correct, update, or modify an existing product?
    - 1. A
    - 2. B
    - 3. C
    - 4. D

- 8-63. Which term describes a product that 8-67. Which term describes the date at contains a self-cancelling provision?
  - 1. A
  - 2. B
  - 3. C
  - 4. D
- 8-64. What reference manual is used to 8-68. assign SSIC's?
  - 1. SECNAVINST 5210.11
  - 2. NAVOCEANCOMNOTE 5215
  - 3. NAVPUBINST 5215.1
  - 4. NAVOCEANCOMINST 3142.1
- 8-65. Which of the following directives list(s) current Naval Oceanography 8-69. Command instructions?
  - 1. SECNAVINST 5210.11
  - 2. NAVOCEANCOMNOTE 5215
  - 3. NAVPUBINST 5215.1
  - 4. Both 2 and 3 above

Learning Objective: Define the terms cut-off date, retention period, transfer date. and disposal date, and identify the tasks involved with file maintenance.

- A. CUT-OFF DATE
- B. RETENTION PERIOD
- C. TRANSFER DATE
- D. DISPOSAL DATE

#### FIGURE 8L

REFER TO FIGURE 8L TO ANSWER QUESTIONS 8-66 THROUGH 8-69.

- Which term describes the date on 8-66. which a file is closed and no new material may be added to the file?
  - 1. A
  - 2. B
  - 3. C
  - 4. D

- the end of the required retention period for temporary records?
  - 1. A
  - 2. B
  - 3. C
  - 4. D
- Which term describes the date at the end of the required retention period for permanent records?
  - 1. A
  - 2. B
  - 3. C
  - 4. D
- Which term refers to the period of time that information must be kept available for reference, before being destroyed or transferred?
  - 1. A
  - 2. B
  - 3. C
  - 4. D
- 8-70. Which of the following publications lists retention periods for all types of record material?
  - 1. SECNAVINST 5210.11
  - 2. SECNAVINST 5212.5
  - 3. NAVPUBINST 5215.1
  - 4. NAVOCEANCOMNOTE 5215
- 8-71. What is the retention period for all meteorological and oceanographic observation records (before they are transferred to a permenent records facility)?
  - 1. 1 mo
  - 2. 1 yr
  - 3. 3 yr
  - 4. 4 yr

- 8-72. After 6 months, what should be done 8-74. Which of the following publications with the copy of a DD 175-1 retained by the briefing organization?
  - 1. It should be placed in permanent storage at a Federal Records Center
  - 2. It should be placed in a closed file
  - 3. It should be destroyed
  - 4. It should be placed in a cardboard box, moved to an out-of-the-way storeroom, then destroyed after 3 years

Learning Objective: Identify the manuals that list the publications and forms required by activities supporting various meteorological and oceanographic functions, and identify the source manuals for information about climatic publications and summaries.

- 8-73. Which of the following publications or directive identifies required publications for various Naval Oceanography Command Units, afloat geophysics units, and Marine Corps weather units?
  - 1. NAVAIR 00-350L-22 (Section L)
  - 2. NAVOCEANCOMINST 5605.2
  - 3. NAVOCEANO SP 3-P
  - 4. NAVPUSINST 5215

- provide(s) listings of climatic studies available for government
  - 1. NA 50-1C-534
  - 2. NOCDASHVILLENOTE 3146
  - 3. AWS/TC-(Current year)/001
  - 4. All of the above

Learning Objective: Identify the source manual containing information about various meteorological and oceanographic charts.

- 8-75. Which DoD, Defense Mapping Agency Catalog of Maps, Charts. and Related Products, part and volume contains information on weather plotting charts?
  - 1. Part 2, volume II
  - 2. Part 1, volume I
  - 3. Part 1, volume II
  - 4. Part 1, volume III